Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.492
Filter
1.
Med Oncol ; 41(6): 140, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713310

ABSTRACT

Glioblastoma (GBM) is an extremely aggressive primary brain tumor with poor prognosis, short survival time post-diagnosis and high recurrence. Currently, no cure for GBM exists. The identification of an effective therapeutic modality for GBM remains a high priority amongst medical professionals and researches. In recent studies, inhalant cannabidiol (CBD) has demonstrated promise in effectively inhibiting GBM tumor growth. However, exactly how CBD treatment affects the physiology of these tumor cells remains unclear. Stress granules (SG) (a sub-class of biomolecular condensates (BMC)) are dynamic, membrane-less intracellular microstructures which contain proteins and nucleic acids. The formation and signaling of SGs and BMCs plays a significant role in regulating malignancies. This study investigates whether inhaled CBD may play an intervening role towards SGs in GBM tumor cells. Integrated bioinformatics approaches were preformed to gain further insights. This includes use of Immunohistochemistry and flow cytometry to measure SGs, as well as expression and phosphorylation of eukaryotic initiation factor-2α (eIF2α). The findings of this study reveal that CBD receptors (and co-regulated genes) have the potential to play an important biological role in the formation of BMCs within GBM. In this experiment, CBD treatment significantly increased the volume of TIAR-1. This increase directly correlated with elevation in both eIF2α expression and p-eIF2α in CBD treated tissues in comparison to the placebo group (p < 0.05). These results suggest that inhalant CBD significantly up-regulated SGs in GBM, and thus support a theory of targeting BMCs as a potential therapeutic substrate for treating GBM.


Subject(s)
Brain Neoplasms , Cannabidiol , Glioblastoma , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Cannabidiol/pharmacology , Humans , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Stress Granules/metabolism , Stress Granules/drug effects , Cell Line, Tumor , Eukaryotic Initiation Factor-2/metabolism
2.
Cell Commun Signal ; 22(1): 266, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741139

ABSTRACT

Glioblastoma (GBM) is a type of brain cancer categorized as a high-grade glioma. GBM is characterized by limited treatment options, low patient survival rates, and abnormal serotonin metabolism. Previous studies have investigated the tumor suppressor function of aldolase C (ALDOC), a glycolytic enzyme in GBM. However, it is unclear how ALDOC regulates production of serotonin and its associated receptors, HTRs. In this study, we analyzed ALDOC mRNA levels and methylation status using sequencing data and in silico datasets. Furthermore, we investigated pathways, phenotypes, and drug effects using cell and mouse models. Our results suggest that loss of ALDOC function in GBM promotes tumor cell invasion and migration. We observed that hypermethylation, which results in loss of ALDOC expression, is associated with serotonin hypersecretion and the inhibition of PPAR-γ signaling. Using several omics datasets, we present evidence that ALDOC regulates serotonin levels and safeguards PPAR-γ against serotonin metabolism mediated by 5-HT, which leads to a reduction in PPAR-γ expression. PPAR-γ activation inhibits serotonin release by HTR and diminishes GBM tumor growth in our cellular and animal models. Importantly, research has demonstrated that PPAR-γ agonists prolong animal survival rates and increase the efficacy of temozolomide in an orthotopic brain model of GBM. The relationship and function of the ALDOC-PPAR-γ axis could serve as a potential prognostic indicator. Furthermore, PPAR-γ agonists offer a new treatment alternative for glioblastoma multiforme (GBM).


Subject(s)
Glioblastoma , PPAR gamma , Temozolomide , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Animals , PPAR gamma/metabolism , Mice , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Disease Progression , Serotonin/metabolism , Signal Transduction/drug effects , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , PPAR-gamma Agonists
3.
Bull Exp Biol Med ; 176(5): 697-702, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38724814

ABSTRACT

One of the key problems of glioblastoma treatment is the low effectiveness of chemotherapeutic drugs. Incorporation of doxorubicin into PLGA nanoparticles allows increasing the antitumor effect of the cytostatics against experimental rat glioblastoma 101.8. Animal survival, tumor volume, and oncogene expression in tumor cells were compared after early (days 2, 5, and 8 after tumor implantation) and late (days 8, 11, and 14) start of the therapy. At late start, a significant increase in the expression of oncogenes Gdnf, Pdgfra, and Melk and genes determining the development of multidrug resistance Abcb1b and Mgmt was revealed. At early start of therapy, only the expression of oncogenes Gdnf, Pdgfra, and Melk was enhanced. Early start of treatment prolonged the survival time and increased tumor growth inhibition by 141.4 and 95.7%, respectively, in comparison with the untreated group; these differences were not observed in the group with late start of therapy. The results indicate that the time of initiation of therapy is a critical parameter affecting the antitumor efficacy of DOX-PLGA.


Subject(s)
Doxorubicin , Glioblastoma , Nanoparticles , Animals , Glioblastoma/drug therapy , Glioblastoma/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Rats , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Male , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Polyglycolic Acid/chemistry , Gene Expression Regulation, Neoplastic/drug effects
4.
Nat Commun ; 15(1): 3905, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724522

ABSTRACT

Glioblastoma multiforme (GBM) encompasses brain malignancies marked by phenotypic and transcriptional heterogeneity thought to render these tumors aggressive, resistant to therapy, and inevitably recurrent. However, little is known about how the spatial organization of GBM genomes underlies this heterogeneity and its effects. Here, we compile a cohort of 28 patient-derived glioblastoma stem cell-like lines (GSCs) known to reflect the properties of their tumor-of-origin; six of these were primary-relapse tumor pairs from the same patient. We generate and analyze 5 kbp-resolution chromosome conformation capture (Hi-C) data from all GSCs to systematically map thousands of standalone and complex structural variants (SVs) and the multitude of neoloops arising as a result. By combining Hi-C, histone modification, and gene expression data with chromatin folding simulations, we explain how the pervasive, uneven, and idiosyncratic occurrence of neoloops sustains tumor-specific transcriptional programs via the formation of new enhancer-promoter contacts. We also show how even moderately recurrent neoloops can relate to patient-specific vulnerabilities. Together, our data provide a resource for dissecting GBM biology and heterogeneity, as well as for informing therapeutic approaches.


Subject(s)
Brain Neoplasms , Chromatin , Gene Expression Regulation, Neoplastic , Glioblastoma , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Chromatin/metabolism , Chromatin/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Genetic Heterogeneity , Promoter Regions, Genetic/genetics , Transcription, Genetic , Enhancer Elements, Genetic/genetics , Chromosomes, Human/genetics
5.
Sci Rep ; 14(1): 10692, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38724609

ABSTRACT

Glioblastoma multiforme (GBM), the most aggressive form of primary brain tumor, poses a considerable challenge in neuro-oncology. Despite advancements in therapeutic approaches, the prognosis for GBM patients remains bleak, primarily attributed to its inherent resistance to conventional treatments and a high recurrence rate. The primary goal of this study was to acquire molecular insights into GBM by constructing a gene co-expression network, aiming to identify and predict key genes and signaling pathways associated with this challenging condition. To investigate differentially expressed genes between various grades of Glioblastoma (GBM), we employed Weighted Gene Co-expression Network Analysis (WGCNA) methodology. Through this approach, we were able to identify modules with specific expression patterns in GBM. Next, genes from these modules were performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using ClusterProfiler package. Our findings revealed a negative correlation between biological processes associated with neuronal development and functioning and GBM. Conversely, the processes related to the cell cycle, glomerular development, and ECM-receptor interaction exhibited a positive correlation with GBM. Subsequently, hub genes, including SYP, TYROBP, and ANXA5, were identified. This study offers a comprehensive overview of the existing research landscape on GBM, underscoring the challenges encountered by clinicians and researchers in devising effective therapeutic strategies.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Gene Ontology , Computational Biology/methods
6.
J Exp Clin Cancer Res ; 43(1): 139, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725030

ABSTRACT

BACKGROUND: LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS: The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS: We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS: Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.


Subject(s)
Glioblastoma , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Mice , Disease Progression , Cell Line, Tumor , Cell Proliferation , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Male , Female , Gene Expression Regulation, Neoplastic , Cell Movement , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Mice, Nude , Apoptosis
7.
Cells ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727288

ABSTRACT

Glioblastoma (GBM) is a devastating brain cancer for which new effective therapies are urgently needed. GBM, after an initial response to current treatment regimens, develops therapeutic resistance, leading to rapid patient demise. Cancer cells exhibit an inherent elevation of endoplasmic reticulum (ER) stress due to uncontrolled growth and an unfavorable microenvironment, including hypoxia and nutrient deprivation. Cancer cells utilize the unfolded protein response (UPR) to maintain ER homeostasis, and failure of this response promotes cell death. In this study, as integrins are upregulated in cancer, we have evaluated the therapeutic potential of individually targeting all αß1 integrin subunits using RNA interference. We found that GBM cells are uniquely susceptible to silencing of integrin α3. Knockdown of α3-induced proapoptotic markers such as PARP cleavage and caspase 3 and 8 activation. Remarkably, we discovered a non-canonical function for α3 in mediating the maturation of integrin ß1. In its absence, generation of full length ß1 was reduced, immature ß1 accumulated, and the cells underwent elevated ER stress with upregulation of death receptor 5 (DR5) expression. Targeting α3 sensitized TRAIL-resistant GBM cancer cells to TRAIL-mediated apoptosis and led to growth inhibition. Our findings offer key new insights into integrin α3's role in GBM survival via the regulation of ER homeostasis and its value as a therapeutic target.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Glioblastoma , Integrin alpha3 , Integrin beta1 , TNF-Related Apoptosis-Inducing Ligand , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Apoptosis/genetics , Cell Line, Tumor , Integrin beta1/metabolism , Integrin beta1/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Integrin alpha3/metabolism , Integrin alpha3/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
8.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727302

ABSTRACT

We have previously shown that the transmembrane protein ODZ1 promotes cytoskeletal remodeling of glioblastoma (GBM) cells and invasion of the surrounding parenchyma through the activation of a RhoA-ROCK pathway. We also described that GBM cells can control the expression of ODZ1 through transcriptional mechanisms triggered by the binding of IL-6 to its receptor and a hypoxic environment. Epidermal growth factor (EGF) plays a key role in the invasive capacity of GBM. However, the molecular mechanisms that enable tumor cells to acquire the morphological changes to migrate out from the tumor core have not been fully characterized. Here, we show that EGF is able to induce the expression of ODZ1 in primary GBM cells. We analyzed the levels of the EGF receptor (EGFR) in 20 GBM primary cell lines and found expression in 19 of them by flow cytometry. We selected two cell lines that do or do not express the EGFR and found that EGFR-expressing cells responded to the EGF ligand by increasing ODZ1 at the mRNA and protein levels. Moreover, blockade of EGF-EGFR binding by Cetuximab, inhibition of the p38 MAPK pathway, or Additionally, the siRNA-mediated knockdown of MAPK11 (p38ß MAPK) reduced the induction of ODZ1 in response to EGF. Overall, we show that EGF may activate an EGFR-mediated signaling pathway through p38ß MAPK, to upregulate the invasion factor ODZ1, which may initiate morphological changes for tumor cells to invade the surrounding parenchyma. These data identify a new candidate of the EGF-EGFR pathway for novel therapeutic approaches.


Subject(s)
Epidermal Growth Factor , ErbB Receptors , Glioblastoma , Up-Regulation , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , ErbB Receptors/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , Cell Line, Tumor , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Invasiveness
9.
Int J Biol Sci ; 20(7): 2440-2453, 2024.
Article in English | MEDLINE | ID: mdl-38725860

ABSTRACT

Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.


Subject(s)
Glioblastoma , STAT3 Transcription Factor , Signal Transduction , Tetraspanins , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Humans , STAT3 Transcription Factor/metabolism , Tetraspanins/metabolism , Tetraspanins/genetics , Cell Line, Tumor , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Animals , Cell Proliferation/genetics , Exosomes/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Movement/genetics , Disease Progression , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice
10.
Front Immunol ; 15: 1388769, 2024.
Article in English | MEDLINE | ID: mdl-38726003

ABSTRACT

Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterize extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems. Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterization was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analyzed by high-resolution mass spectrometry. Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR-323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer-associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response. Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.


Subject(s)
Extracellular Vesicles , Glioblastoma , MicroRNAs , Organoids , Tumor Microenvironment , Humans , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Organoids/immunology , MicroRNAs/genetics , Tumor Microenvironment/immunology , Signal Transduction , Tumor Cells, Cultured , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Culture Techniques, Three Dimensional/methods
11.
Front Immunol ; 15: 1342977, 2024.
Article in English | MEDLINE | ID: mdl-38698847

ABSTRACT

Introduction: Aberrant reactive oxygen species (ROS) production is one of the hallmarks of cancer. During their growth and dissemination, cancer cells control redox signaling to support protumorigenic pathways. As a consequence, cancer cells become reliant on major antioxidant systems to maintain a balanced redox tone, while avoiding excessive oxidative stress and cell death. This concept appears especially relevant in the context of glioblastoma multiforme (GBM), the most aggressive form of brain tumor characterized by significant heterogeneity, which contributes to treatment resistance and tumor recurrence. From this viewpoint, this study aims to investigate whether gene regulatory networks can effectively capture the diverse redox states associated with the primary phenotypes of GBM. Methods: In this study, we utilized publicly available GBM datasets along with proprietary bulk sequencing data. Employing computational analysis and bioinformatics tools, we stratified GBM based on their antioxidant capacities and evaluated the distinctive functionalities and prognostic values of distinct transcriptional networks in silico. Results: We established three distinct transcriptional co-expression networks and signatures (termed clusters C1, C2, and C3) with distinct antioxidant potential in GBM cancer cells. Functional analysis of each cluster revealed that C1 exhibits strong antioxidant properties, C2 is marked with a discrepant inflammatory trait and C3 was identified as the cluster with the weakest antioxidant capacity. Intriguingly, C2 exhibited a strong correlation with the highly aggressive mesenchymal subtype of GBM. Furthermore, this cluster holds substantial prognostic importance: patients with higher gene set variation analysis (GSVA) scores of the C2 signature exhibited adverse outcomes in overall and progression-free survival. Conclusion: In summary, we provide a set of transcriptional signatures that unveil the antioxidant potential of GBM, offering a promising prognostic application and a guide for therapeutic strategies in GBM therapy.


Subject(s)
Antioxidants , Brain Neoplasms , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma , Oxidation-Reduction , Phenotype , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Antioxidants/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Reactive Oxygen Species/metabolism , Oxidative Stress , Computational Biology/methods , Prognosis , Gene Expression Profiling , Transcriptome
12.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720342

ABSTRACT

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Subject(s)
Brain Neoplasms , Myeloid-Derived Suppressor Cells , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Myeloid-Derived Suppressor Cells/immunology , Glioma/immunology , Glioma/therapy , Glioma/pathology , Glioblastoma/immunology , Glioblastoma/therapy , Glioblastoma/pathology , Animals , Immunotherapy/methods , T-Lymphocytes, Regulatory/immunology
13.
BMC Cancer ; 24(1): 607, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769480

ABSTRACT

BACKGROUND: Cancerous cells' identity is determined via a mixture of multiple factors such as genomic variations, epigenetics, and the regulatory variations that are involved in transcription. The differences in transcriptome expression as well as abnormal structures in peptides determine phenotypical differences. Thus, bulk RNA-seq and more recent single-cell RNA-seq data (scRNA-seq) are important to identify pathogenic differences. In this case, we rely on k-mer decomposition of sequences to identify pathogenic variations in detail which does not need a reference, so it outperforms more traditional Next-Generation Sequencing (NGS) analysis techniques depending on the alignment of the sequences to a reference. RESULTS: Via our alignment-free analysis, over esophageal and glioblastoma cancer patients, high-frequency variations over multiple different locations (repeats, intergenic regions, exons, introns) as well as multiple different forms (fusion, polyadenylation, splicing, etc.) could be discovered. Additionally, we have analyzed the importance of less-focused events systematically in a classic transcriptome analysis pipeline where these events are considered as indicators for tumor prognosis, tumor prediction, tumor neoantigen inference, as well as their connection with respect to the immune microenvironment. CONCLUSIONS: Our results suggest that esophageal cancer (ESCA) and glioblastoma processes can be explained via pathogenic microbial RNA, repeated sequences, novel splicing variants, and long intergenic non-coding RNAs (lincRNAs). We expect our application of reference-free process and analysis to be helpful in tumor and normal samples differential scRNA-seq analysis, which in turn offers a more comprehensive scheme for major cancer-associated events.


Subject(s)
Glioblastoma , Single-Cell Analysis , Transcriptome , Humans , Single-Cell Analysis/methods , Glioblastoma/genetics , Glioblastoma/pathology , Gene Expression Profiling/methods , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , High-Throughput Nucleotide Sequencing , RNA-Seq/methods , Sequence Analysis, RNA/methods , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/pathology
14.
Theranostics ; 14(7): 2835-2855, 2024.
Article in English | MEDLINE | ID: mdl-38773970

ABSTRACT

Rationale: The large-scale genomic analysis classifies glioblastoma (GBM) into three major subtypes, including classical (CL), proneural (PN), and mesenchymal (MES) subtypes. Each of these subtypes exhibits a varying degree of sensitivity to the temozolomide (TMZ) treatment, while the prognosis corresponds to the molecular and genetic characteristics of the tumor cell type. Tumors with MES features are predominantly characterized by the NF1 deletion/alteration, leading to sustained activation of the RAS and PI3K-AKT signaling pathways in GBM and tend to acquire drug resistance, resulting in the worst prognosis compared to other subtypes (PN and CL). Here, we used the CRISPR/Cas9 library screening technique to detect TMZ-related gene targets that might play roles in acquiring drug resistance, using overexpressed KRAS-G12C mutant GBM cell lines. The study identified a key therapeutic strategy to address the chemoresistance against the MES subtype of GBM. Methods: The CRISPR-Cas9 library screening was used to discover genes associated with TMZ resistance in the U87-KRAS (U87-MG which is overexpressed KRAS-G12C mutant) cells. The patient-derived GBM primary cell line TBD0220 was used for experimental validations in vivo and in vitro. Chromatin isolation by RNA purification (ChIRP) and chromatin immunoprecipitation (ChIP) assays were used to elucidate the silencing mechanism of tumor suppressor genes in the MES-GBM subtype. The small-molecule inhibitor EPIC-0412 was obtained through high-throughput screening. Transmission electron microscopy (TEM) was used to characterize the exosomes (Exos) secreted by GBM cells after TMZ treatment. Blood-derived Exos-based targeted delivery of siRNA, TMZ, and EPIC-0412 was optimized to tailor personalized therapy in vivo. Results: Using the genome-wide CRISPR-Cas9 library screening, we found that the ERBIN gene could be epigenetically regulated in the U87-KRAS cells. ERBIN overexpression inhibited the RAS signaling and downstream proliferation and invasion effects of GBM tumor cells. EPIC-0412 treatment inhibited tumor proliferation and EMT progression by upregulating the ERBIN expression both in vitro and in vivo. Genome-wide CRISPR-Cas9 screening also identified RASGRP1(Ras guanine nucleotide-releasing protein 1) and VPS28(Vacuolar protein sorting-associated protein 28) genes as synthetically lethal in response to TMZ treatment in the U87-KRAS cells. We found that RASGRP1 activated the RAS-mediated DDR pathway by promoting the RAS-GTP transformation. VPS28 promoted the Exos secretion and decreased intracellular TMZ concentration in GBM cells. The targeted Exos delivery system encapsulating drugs and siRNAs together showed a powerful therapeutic effect against GBM in vivo. Conclusions: We demonstrate a new mechanism by which ERBIN is epigenetically silenced by the RAS signaling in the MES subtype of GBM. Restoration of the ERBIN expression with EPIC-0412 significantly inhibits the RAS signaling downstream. RASGRP1 and VPS28 genes are associated with the promotion of TMZ resistance through RAS-GDP to RAS-GTP transformation and TMZ efflux, as well. A quadruple combination therapy based on a targeted Exos delivery system demonstrated significantly reduced tumor burden in vivo. Therefore, our study provides new insights and therapeutic approaches for regulating tumor progression and TMZ resistance in the MES-GBM subtype.


Subject(s)
CRISPR-Cas Systems , Drug Resistance, Neoplasm , Exosomes , Glioblastoma , Temozolomide , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/drug therapy , Temozolomide/pharmacology , Temozolomide/therapeutic use , Humans , Drug Resistance, Neoplasm/genetics , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Animals , Exosomes/metabolism , Exosomes/genetics , Mice , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Carcinogenesis/genetics , Carcinogenesis/drug effects , Mice, Nude , Xenograft Model Antitumor Assays
15.
Int Rev Cell Mol Biol ; 386: 1-47, 2024.
Article in English | MEDLINE | ID: mdl-38782497

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive brain tumor with an average life expectancy of less than 15 months. Such high patient mortality in GBM is pertaining to the presence of clinical and molecular heterogeneity attributed to various genetic and epigenetic alterations. Such alterations in critically important signaling pathways are attributed to aberrant gene signaling. Different subclasses of GBM show predominance of different genetic alterations and therefore, understanding the complex signaling pathways and their key molecular components in different subclasses of GBM is extremely important with respect to clinical management. In this book chapter, we summarize the common and important signaling pathways that play a significant role in different subclasses and discuss their therapeutic targeting approaches in terms of preclinical studies and clinical trials.


Subject(s)
Brain Neoplasms , Glioblastoma , Signal Transduction , Humans , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Animals
16.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786032

ABSTRACT

Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. GBM has high levels of therapy failure and its prognosis is usually dismal. The phenotypic heterogeneity of the tumor cells, dynamic complexity of non-tumor cell populations within the GBM tumor microenvironment (TME), and their bi-directional cross-talk contribute to the challenges of current therapeutic approaches. Herein, we discuss the etiology of GBM, and describe several major types of non-tumor cells within its TME, their impact on GBM pathogenesis, and molecular mechanisms of such an impact. We also discuss their value as potential therapeutic targets or prognostic biomarkers, with reference to the most recent works on this subject. We conclude that unless all "key player" populations of non-tumor cells within the TME are considered, no breakthrough in developing treatment for GBM can be achieved.


Subject(s)
Glioblastoma , Tumor Microenvironment , Humans , Glioblastoma/pathology , Glioblastoma/therapy , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Animals
17.
Cells ; 13(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38786045

ABSTRACT

Macrophages and microglia are professional phagocytes that sense and migrate toward "eat-me" signals. The role of phagocytic cells is to maintain homeostasis by engulfing senescent or apoptotic cells, debris, and abnormally aggregated macromolecules. Usually, dying cells send out "find-me" signals, facilitating the recruitment of phagocytes. Healthy cells can also promote or inhibit the phagocytosis phenomenon of macrophages and microglia by tuning the balance between "eat-me" and "don't-eat-me" signals at different stages in their lifespan, while the "don't-eat-me" signals are often hijacked by tumor cells as a mechanism of immune evasion. Using a combination of bioinformatic analysis and spatial profiling, we delineate the balance of the "don't-eat-me" CD47/SIRPα and "eat-me" CALR/STC1 ligand-receptor interactions to guide therapeutic strategies that are being developed for glioblastoma sequestered in the central nervous system (CNS).


Subject(s)
CD47 Antigen , Calreticulin , Glioblastoma , Phagocytes , Phagocytosis , Humans , Glioblastoma/pathology , Glioblastoma/therapy , Glioblastoma/metabolism , CD47 Antigen/metabolism , Phagocytes/metabolism , Calreticulin/metabolism , Receptors, Immunologic/metabolism , Macrophages/metabolism , Macrophages/immunology , Microglia/metabolism , Microglia/pathology , Cell Death , Animals , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Antigens, Differentiation
18.
Immunity ; 57(5): 1105-1123.e8, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38703775

ABSTRACT

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.


Subject(s)
Glioblastoma , Glucose , Histones , Macrophages , Glioblastoma/immunology , Glioblastoma/metabolism , Glioblastoma/pathology , Animals , Histones/metabolism , Mice , Macrophages/immunology , Macrophages/metabolism , Glucose/metabolism , Humans , Cell Line, Tumor , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Interleukin-10/metabolism , Glycolysis , Microglia/metabolism , Microglia/immunology , Mice, Inbred C57BL , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Immune Tolerance
19.
Cell Death Dis ; 15(5): 318, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710703

ABSTRACT

Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear. Using bioinformatics analysis, we identified the specific expression of ABCB4 in GSCs. Subsequently, we established GSC cell lines and used ultracentrifugation to extract secreted exosomes. We conducted in vitro and in vivo investigations to validate the promoting effect of ABCB4 and ABCB4-containing exosomes on TMZ resistance. Finally, to identify the transcription factors regulating the transcription of ABCB4, we performed luciferase assays and chromatin immunoprecipitation-quantitative PCR. Our results indicated that ABCB4 is highly expressed in GSCs. Moreover, high expression of ABCB4 promoted the resistance of GSCs to TMZ. Our study found that GSCs can also transmit their highly expressed ABCB4 to differentiated glioma cells (DGCs) through exosomes, leading to high expression of ABCB4 in these cells and promoting their resistance to TMZ. Mechanistic studies have shown that the overexpression of ABCB4 in GSCs is mediated by the transcription factor ATF3. In conclusion, our results indicate that GSCs can confer resistance to TMZ in GBM by transmitting ABCB4, which is transcribed by ATF3, through exosomes. This mechanism may lead to drug resistance and recurrence of GBM. These findings contribute to a deeper understanding of the mechanisms underlying drug resistance in GBM and provide novel insights into its treatment.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Activating Transcription Factor 3 , Brain Neoplasms , Drug Resistance, Neoplasm , Exosomes , Glioblastoma , Neoplastic Stem Cells , Temozolomide , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/genetics , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Exosomes/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Animals , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Mice , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude
20.
Acta Neuropathol Commun ; 12(1): 77, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762464

ABSTRACT

Glioblastoma (GBM) is the most common malignant brain tumor in adults, which remains incurable and often recurs rapidly after initial therapy. While large efforts have been dedicated to uncover genomic/transcriptomic alternations associated with the recurrence of GBMs, the evolutionary trajectories of matched pairs of primary and recurrent (P-R) GBMs remain largely elusive. It remains challenging to identify genes associated with time to relapse (TTR) and construct a stable and effective prognostic model for predicting TTR of primary GBM patients. By integrating RNA-sequencing and genomic data from multiple datasets of patient-matched longitudinal GBMs of isocitrate dehydrogenase wild-type (IDH-wt), here we examined the associations of TTR with heterogeneities between paired P-R GBMs in gene expression profiles, tumor mutation burden (TMB), and microenvironment. Our results revealed a positive correlation between TTR and transcriptomic/genomic differences between paired P-R GBMs, higher percentages of non-mesenchymal-to-mesenchymal transition and mesenchymal subtype for patients with a short TTR than for those with a long TTR, a high correlation between paired P-R GBMs in gene expression profiles and TMB, and a negative correlation between the fitting level of such a paired P-R GBM correlation and TTR. According to these observations, we identified 55 TTR-associated genes and thereby constructed a seven-gene (ZSCAN10, SIGLEC14, GHRHR, TBX15, TAS2R1, CDKL1, and CD101) prognostic model for predicting TTR of primary IDH-wt GBM patients using univariate/multivariate Cox regression analyses. The risk scores estimated by the model were significantly negatively correlated with TTR in the training set and two independent testing sets. The model also segregated IDH-wt GBM patients into two groups with significantly divergent progression-free survival outcomes and showed promising performance for predicting 1-, 2-, and 3-year progression-free survival rates in all training and testing sets. Our findings provide new insights into the molecular understanding of GBM progression at recurrence and potential targets for therapeutic treatments.


Subject(s)
Brain Neoplasms , Glioblastoma , Isocitrate Dehydrogenase , Neoplasm Recurrence, Local , Transcriptome , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Neoplasm Recurrence, Local/genetics , Male , Female , Genomics/methods , Mutation , Middle Aged , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...